Math 131B-2: Homework 7

Due: May 19, 2014

1. Read Apostol Sections 9.12, 9.18-19, 8.24, 9.22.
2. Find the intervals of convergence of the following power series:

- $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}(x-5)^{n}$
- $\sum_{n=1}^{\infty} \sqrt{n}(x-1)^{n}$
- $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 4^{n}}(x+2)^{n}$
- $\sum_{n=1}^{\infty} n!(x-3)^{n}$

3. Prove that the power series $f(x)=\sum_{n=0}^{\infty} x^{n}$ is not uniformly convergent on $(-1,1)$.
4. Do Apostol problems 9.33, 9.36, and 9.37.
5. Do Apostol problem 9.21. Explain why the result you get does not contradict Abel's Theorem. Note: for this problem, it will be helpful to recall the partial fractions decomposition $\frac{1}{1-x^{2}}=\frac{1}{2}\left(\frac{1}{1-x}+\frac{1}{1+x}\right)$.
6. Recall that $B(M \rightarrow S)$ is the set of bounded functions $f: M \rightarrow S$ and $C(M \rightarrow S) \subset$ $B(M \rightarrow S)$ is the subspace consisting of bounded continuous functions.

- Prove that the operation $d_{\infty}(f, g)=\sup _{x \in M} d_{S}(f(x), g(x))$ is a metric on $B(M \rightarrow S)$.
- We showed in class that $C(M \rightarrow S)$ is a closed subset of $B(M \rightarrow S)$. Give an example showing that $C(M \rightarrow S)$ need not be compact.
- Give an example showing that if S is not complete, $C(M \rightarrow S)$ need not be complete.

7. Double sums with only nonnegative terms

- Prove that $\sum_{i} \sum_{j} a_{i j}=\sum_{j} \sum_{i} a_{i j}$ if $a_{i j} \geq 0$ for all i and j, as long as we allow the case $+\infty=+\infty$ to occur.
- Let

$$
a_{i j}=\frac{1}{(i+1)!}\left(\frac{i}{i+1}\right)^{j} .
$$

What is $\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{i j}$?
8. Power series and integral approximations We can use what we know about integrating power series to approximate integrals we can't do by hand. Here's an example in which we approximate $\int_{0}^{1} \cos \left(x^{2}\right)$.

- Prove that $\int_{0}^{1} \cos \left(x^{2}\right)=\sum_{n=0}^{\infty} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}$.
- Recall that if $s=\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ is an alternating series and s_{n} is its nth partial sum, we have $\left|s_{n}-s\right|<a_{n+1}$. With this in mind, find an approximation to $\int_{0}^{1} \cos \left(x^{2}\right)$ which is within 10^{-3} of the true value. Is your answer an over or underestimate?

